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The one-dimensional Hubbard model with first-, second- and 
third-nearest-neighbour hopping in the strong-coupling limit 
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School of Physics, Birmingham University, Edgbaston, Birmingham B15 Z l T ,  UK 
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Abstract. Using an exlension of the Jordan-Wigner Vansformation, we solve the one- 
dimensional Hubbard model at U = m in the limit of dominant nearest-neighbour hopping 
combined with infinitesimal hopping over slightly longer ranges. We find several passible phases 
at zem empemlure, including ferromagnetism, paramagnetism (with and without a spin gap), 
and even long-range antifermmagnetism with a particular limiting procedure. Our solutions are 
always spin-charge separated, and we give evidence that the charge degrees of freedom are test 
described by bosonic statistics. 

1. Introduction 

The Hubbard model is probably the simplest description that can be used to discuss metals 
with ‘Moa insulating’ atoms. In the most extreme case, where one type of charge fluctuation 
is banished from the prablem altogether, the model reduces to a single-parameter model; 
the t model: 

where ct, (c,,,) creates (annihilates) an elechun of spin U (complementary spin 5 )  on an 
atom i. The model hops electrons between nearest-neighbour atoms, denoted by (ii’), and 
the factors (1 -cjbc,b) ensure that sites can never become doubly occupied, hence enforcing 
the constraint that one charge state for each atom is eliminated that with two electrons on 
the atom. 

Applied to the square lattice, this model may well provide an explanation for high- 
temperature superconductivity [I], although it is far from clear whether or not an essential 
ingredient has been omitted [2]. Although this model has been heavily studied over the past 
few years, the results remain in the realm of folklore and conjecture [3], with ‘hard’ facts 
restricted to unphysical limits and one dimension [4]. 

The U = ca limit of the square lattice Hubbard model has been a source of intemt, 
and various ideas have emerged. In contradiction to the predictions of standard mean-field 
treatments, the low-density limit is paramagnetic 151. The ground state involves highly 
correlated electrons, and the physics has not been resolved. Close to one electron per site 
lies a possibility of a ferromagnetic phase, although the evidence for this is really only 
Nagaoka’s theorem [6], which is a solution of the model in a non-thermodynamic limit. We 
will interpret our solutions in these terms, and we find rigorous examples of these phases 
in one dimension. 
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The behaviour of electrons under the action of the Hubbard model may be very different 
from the usual behaviour in normal metals. Normally, electrons ‘run around’ and effectively 
‘ignore’ each other. Although the electrons are repelled from each other the consequences 
are usually minor. All that usually occurs is that the probability of the electrons coming 
together is slightly reduced, but the particles are still free to go everywhere. For the U = 03 

Hubbard model, however, the electrons are not allowed to doubly occupy atoms, and so 
there is a new restriction on the places where the electrons may go. Two possibilities are 
plausible. Firstly, there may be sufficient ‘gaps’ between electrons for the particles to move 
around effectively ‘ignoring’ each other. Secondly, the motion of the particles may become 
highly correlated, with the motion becoming collective and particles moving by ‘pushing’ 
each other out of the way. For onedimensional systems there is no way around other 
particles, and so we are forced into the collective motion picture. This has led to one of 
the most exciting facts to have emerged in the analysis, that the onedimensional solution is 
spin-charge separated, which means that the quasi-particles have quantum numbers distinct 
from those found on the constituent electrons. The real issue is then whether or not these 
results extend to the experimentally relevant two dimensional case. 

It has been argued quite forcefully that one dimension is special. The fact that particles 
cannot orbit each other is thought to lead to both the exact solutions and the spin-charge 
separation, and that the two-dimensional system will show neither characteristic. We do 
not believe this, and believe on the contrary that the two-dimensional systems are more 
susceptible to the many-particle interactions that cause the problems. In this article we 
will solve some one-dimensional models that involve particles orbiting each other. Our 
solutions can be interpreted in similar terms to those that have been used to discuss the 
two-dimensional square model, and the role of the many-body interactions is seen to be 
larger in the two-dimensional system. 

Although in two dimensions there are gaps through which electrons can pass in order 
to avoid other electrons, the physics is not that simple: electrons are fermions. One can 
view the quantum mechanical problem of electronic motion as that of a superposition of 
all possible ways for pahcular configurations of particles to be encountered in the motion, 
combined with a statistical phase in the superposition. If particles are exchanged in motion 
along distinct routes, then the fermionic phase difference between these different paths can 
phase cancel, leading to reduced motion. In practice, this is a very strong force reducing 
the fermionic motion. With a careful choice of spin wavefunction, it is possible for this 
statistical phase cancellation to be reduced, and for the charge motion to become controlled 
by the spin wavefunction. The picture is that the electrons move predominantly when the 
local spin configuration favours phase coherence and do not move when phase cancellation 
is probable. We will see that this idea is central to an interpretation of our solutions, 
and that indeed the spin wavefunction almost totally controls the charge motion in our 
paramagnetic phases. Recently one of the present authors has investigated this idea for the 
two-dimensional Hubbard model in a separate collaboration, and the evidence in favour of 
the uniform phase motion is excellent [7]. 

Unfortunately, it has not proved possible to solve the Hubbard model in anything other 
than an extreme limit, although this limit is quite a physically attractive one. We take the 
U = 00 onedimensional Hubbard model with nearest-neighbour hopping and solve the 
model with infinitesimal hopping over short but finite distances. In practice, this constitutes 
using degenerate perturbation theory to lift the spin degeneracy found in the U = CO limit. 
The one-dimensional Hubbard model has been solved by the Bethe ansatz [4], and the role 
of weak Heisenberg interactions between the spins in the separated spin system is well 
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understood. The critical difference between these one-dimensional systems and the two- 
dimensional square lattice of physical interest is the existence of square loops around which 
particles can permute. These loops lead to very strong interactions between the spins, which 
could easily dominate the weak Heisenberg interactions for sizeable doping. In our analysis, 
it is precisely this type of square-loop permutation we are modelling, yielding insight into 
this fundamental difference between the one- and two-dimensional models. 

The reason that we have been able to solve the present limit is that we have devised 
a representation for the state space that naturally describes spin+harge-separated solutions, 
and since all of our solutions fall into this class they are tractable. Our representation 
is a horribly non-linear transformation away from the original spin-full fermion starting 
point, and this transformation constitutes the underlying mathematics. In concept the 
transformation is akin to the Jordan-Wigner transformation [8],  which solves the one- 
dimensional n-y model, and we have generalized the transformation to take account of 
the spin degree of freedom present on the electrons. 

In section 2 we present the transformation, in section 3 we apply the transformation to 
our Hubbard model, solving it in our chosen limit in section 4. In section 5 we interpret 
the solution, and in section 6 we conclude. 

2. The representation and the transformation 

The basic reason for spin-charge separation is that the charges move around on a time-scale 
for which the spin degrees of freedom are frozen. To leading order the charges ‘concertina’ 
against each other, and to move a charge about requires shuffling all the charges between 
the two relevant end points, exchanging them in such a way that the spin configuration 
along the chain is conserved. In order to describe this sort of state it is useful to rerepresent 
the states by 

where the create particles with fermionic statistics on site i and the spins ob: are presumed 
to be ordered along the chain. It is crucial to realize that we must deal with free boundary 
conditions in our derivation, since our ordering must start somewhere. We have elected 
to label the first atom in the chain by 1. The key to this representation is to find the 
transformation that maps the original operators, the ci,,, onto the new operators, the f ,  for 
the charges and &,, which act on the spins. Although it is quite tricky to write down this 
transformation on all states, it has proved possible to write it down for each subset of states 
with fixed electron number. The operators which move charges around are ‘simply’ 

t t 

I 1  I ,+” 
= t Z  P P P T 7 r  

where the xi measure whether or not an electron is on a particular site i, and in terms of 
which the cq = xm count how many electrons come before a particular site, making 
a useful spin label. The first two f operators move the charge. The summations over the 
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x variables break the states down into all possible charge configurations up to final point 
in the charge transfer. The operator involving the z component of spin ensures that the 
electron moved has the correct spin, and the string of spin operators shuffle the spins along 
conserving their order along the chain. Each term [$ + 2& . &+, provides an elementary 
permutation of the two spins involved, and so the product is just a simple cyclic permutation 
of the relevant spin variables. Due to the central role that these cyciic permutations hold in 
our analysis, we will introduce a notation for such a permutation, R,,,+,, where 
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and we are using the letter R to represent the idea of 'ring exchange' which is how this 
concept has often been labelled in the literature. 

We will not be concemed with applications of this formalism to finite systems, but 
only with the thermodynamic limit. We assume, without proof, that the final result 
does not depend on boundary conditions, and then the particular starting point for the 
01 label is irrelevanb and only the difference between any two is relevant. Careful analysis 
of the formula will show that the only dependence on the XI, for j i ,  is in the 
combination ~~~~ xj ,  which is simply the total number of electrons before the site i. 
In the thermodynamic limit, we would expect this number of electrons to diverge and to 
become irrelevant. If this is the case, then there is no direct dependence on xj for j c i ,  
and the summations can be performed yielding unity. In the thermodynamic limit, we need 
only break up the charge configurations benveen the two end-points of the charge transfer. 

We provide examples of the first few such operators in the next section. 

3. The one-dimensional Hubbard model with inlinitesimal short-range hopping 

The reason that we can solve the current model is that we can map it onto a pair of models 
that have previously been independently solved the charge motion is controlled by a non- 
interacting spinless-fermion model and the spin dynamics are mapped onto the Heisenberg 
model with short-range magnetic interactions. The fermion problem is elementary, although 
the Heisenberg model requires the Bethe ansatz for a complete solution [9]. Solutions for 
other values of short-range interaction parameters have also been given in the literature [IO]. 

In the absence of next-nearest-neighbour hopping. the spin degeneracy remains and the 
charge degrees of freedom map onto a spinless fermion model: 

which comes directly from equation (2.2), for our representation. This model is diagonal 
in reciprocal space, and since it is a non-interacting theory all the correlation functions can 
be found from the single-particle correlations: 

in terms of the average electron number no per site. 
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Let us commence with second-nearest-neighbour hopping. Once again, equation (2.2) 
provides us with the interaction for our basis: 

where we are using our new spin operator, &.u+l which cyclically permutes spin indices. 
Obviously, &o+~ = 4 + 2& - &+I, as has already been explained. 

If this additional interaction is infinitesimal, then the spin degeneracy will be lifted 
Using degenerate perturbation theory requires finding the effective spin-spin interaction 
when the charge degrees of freedom are in their ground state. In practice this is elementary 
and the interaction is simply 

(3.4) 

i.e. the Heisenberg model with nearest-neighbour coupling. Evaluating these correlation 
functions demonstrates that the interaction is always antiferromagnetic, a result which will 
be physically explained in the next section. 

Second-nearest-neighbour hopping involves the introduction of triangles into the 
geometry, and this is only natural for a geometrically hstrated system. The square lattice 
is an unfrustrated bipartite geometry, and the simplest infinitesimal bipartite inclusion is 
third-nearest-neighbour hopping. In our representation this interaction is simply 

?here we have extended the definition of cyclic permutations to that for three objects, 
R.,.+2. The effective spin interaction for this case is of the form 

where 

JI = 4tz(n3n; +n: + nln: - n3n: - 2nonlnz + 2(n1n2 -nons)) 

is the nearest-neighbour effective Heisenberg exchange and 

52 = -2tZ(n3n; + n: + nln;  - n3n: - 2nonlnz) 

is the next-nearest-neighbour effective Heisenberg exchange. We now find some next- 
nearest-neighbour spin interactions. Unlike the previous case, there is now a competition 
between the various types of behaviour as the chemical potential is moved, and we find that 
these coefficients can change sign as depicted in figure 1. 

We can extend these ideas to longer-range hopping, generating longer-range ring 
exchange. Unlike the current short-range hops, ring exchange of four or more particles is not 
equivalent to a pure quadratic exchange interaction, and a sizeable biquadratic interaction 
is induced. The physics of these more exotic Hamiltonians has not been heavily studied in 
the literature and remains quite mysterious to the authors. 
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Figure 1. The Heisenberg exchange malrix elements Jl and Jz for nearest-neighbour and next- 
nearest neighbour exchange, respectively, in units of the infinitesimal inclusion I. lo the hopping. 
The broken curve is for next-nearest neighbour hopping, t l ,  and is purely nearest-neighbour 
exchange, whereas the two full lines correspond to nexl-nextmarest neighbour hopping. R. 
yielding a weak negative Jz and a strong but wildly varying J,. 

4. The solution 

In the previous section we found the effective interactions between the spins for our Hubbard 
model with infinitesimal short-range hopping. A fair amount is known about the particular 
spin models encountered, and in this section we detail a fraction of this knowledge and then 
comment on the relevance to the original Hubbard model. 

For next-nearest-neighbour hopping, the character of the solution depends only on the 
sign of the next-nearest-neighbour hopping-matrix elements. This is because of a symmetry 
inherent to the Hubbard model: if we reverse the relative phase of the states in the two 
natural sublattices, the physics remains unaltered but the hops between the two sublattices 
reverse their sign. The phase of the nearest-neighbour hops is therefore irrelevant, but the 
phase of the next-nearest-neighbour hops is physically important. If this phase is negative, 
then we find a purely ferromagnetic ground state with fermionic excitations. If, on the other 
hand, the phase is positive, then we find a paramagnetic spin state involving the spin-half 
Heisenberg ground state sequentially along the chain. This spin wavefunction then feeds 
back an interaction between the charges, attracting them to each other. The effective charge 
Hamiltonian is 

H: = -tl C[fitfi+*[l -L;lfit121n2] tcc] (4.1) 

where the additional interaction originates from the fact that two fermions in a singlet 
exchange with the opposite sign to two fermions in a triplet, and the probability of finding 
two neighbouring particles in a singlet is In 2 in the ground state of the Heisenberg model. 
This result indicates that the motion of the particles becomes much more bosonic than 
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fermionic, since the same model with In 2 = 0.693 15 replaced by unity would provide the 
precise fermionic description for hard-core bosons moving under the action of infinitesimal 
next-nearest-neighbour hopping. The effective charge motion is much more like that of 
bosons than that of fermions, and this method of comparing the interactions in a definite 
representation appears to provide a useful technique for comparing statistics of excitations 
in one dimension. 

In the introduction we introduced the idea that the spin wavefunction could control the 
motion of the charges. It is important to realize that this idea underlies the current solution. 
The spin wavefunction along the chain is the Heisenberg ground state and so is invariant 
with respect to the actual positions of the particles. Although the electrons have the freedom 
to hop past each other, they do not do so independently: when an electron hops past another 
one, the spin state in the ground state remains the same. In practice, this means that there is 
a reduced probability for the electron to make the hop, and in fact it only hops into a state 
with the reordered spins having the Heisenberg gmund state. Alternatively, we can say that 
as the electrons hop past each other the spin wavefunction for the previous ordering changes 
in such a way as to produce the same spin wavefunction for the new ordering. This argument 
is equivalem to phase cancellation in the the superposition interpretation: if two routes lead 
to the same state with opposite phase, then there is a cancellation and the state is included 
with a smaller amplitude. We can interpret the physics either in terms of electrons not 
hopping or in terms of electrons hopping and cancelling: it is a matter of taste. The phases 
are such that electrons exchanging in triplets phase cancel, while electrons exchanging in 
singlets are phase coherent. Electrons therefore hop across each other mainly when they 
are in local singlet configurations, and do not usually hop over when parallel: This is the 
physical reason why the Heisenberg ground state is stabilized. At this level the argument 
is not very strong, because all possibilities can also be thought to take place, and the lack 
of motion as triplets can altematively be understood in terms of phase cancellation between 
all the possible ways of arriving in the new state, a phenomenon which also occurs in the 
non-interacting free-electron gas. In this picture the correlations are associated with the 
different phase that the electrons pick up, when comparing hops past vacant and occupied 
atoms: the phase when vacant is the same as for a spinless fermion, but the phase when 
occupied is on average opposite, because there is an additional phase from the antisymmetry 
of the spin singlet. When we move on to next-next-nearest-neighbour exchange, we will 
see that there is a more direct effect of the local electronic correlations. 

Unlike second-nearest-neighbour hopping, thii-nearest-neighbour hopping provides a 
host of phase transitions and fairly violent changes of behaviour. The phase diagram can 
immediately be deduced from figure I .  Once again, if the relative phase of the states on 
the two natural sublattices is reversed, we see that both hops, namely nearest- and next- 
next-nearest-neighbour, reverse the signs of their matrix elements, and the physics does not 
therefore depend on the absolute phases of these matrix elements, but only on their relative 
phase. In the physically more reasonable case, when the two matrix elements have the 
same sign, then at densities below the critical density, n ,  = 0.6675035, we find a quantum 
paramagnet that ranges from the Heisenberg ground state at low charge densities to an 
ordered antiferromagnet in the limit where the density approaches the critical density from 
below. Above the critical density we find saturated ferromagnetism, a variant of ‘Nagaoka 
ferromagnetism’ [6].  For the case where the two matrix elements are. of opposite sign, 
we find the reversed result of ferromagnetism for low densities together with a quantum 
paramagnet for high densities. The effective Heisenberg model for the paramagnet is the 
much studied ‘railroad trestle’ geometry [ I  I]. In the limit tending to the critical density from 
above, we find the pathological case of two disconnected rails, while in the limit tending to 
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one electron per site we find the exactly solvable Majumdar-Ghosh model [IO], for which 
the system exhibits a spontaneously broken spatial symmetry. We will now discuss each of 
these phases in a little more detail. 

Our ferromagnetic phase corresponds directly to the phase plausibly predicted by 
Nagaoka in his infamous paper dealing with one hole in the U = 00 limit [6]. Since 
then this ferromagnetic phase has been heavily criticized for the two-dimensional square 
lattice, of which a variety of analytical and numerical calculations find little trace [12], 
although a few calculations seem to support its existence [13]. For our one-dimensional 
model we have unambiguously proved the existence of the phase, but in a subsequent article 
we shall show that if the range of hopping is allowed to diverge, a necessary requirement 
to try to move towards two dimensions, then the stable region of ferromagnetism shrinks 
down to nothing. 

The quantum antiferromagnet below the critical density is the more interesting 
phase, because of the obvious connection with perovskite superconductivity. The spin 
wavefunction is the ground state of the Heisenberg model with nearest-neighbour and 
next-nearest-neighbour interactions, the so-called 'railroad trestle' geometry. As can be 
seen from figure 1, the second-nearest neighbour exchange is always ferromagnetic, and 
so will promote both ferromagnetic and antiferromagnetic N&l correlations. The first- 
nearest-neighbour interactions are antiferromagnetic below the critical density, but become 
progressively less important as we approach n, from below. At low densities the nearest- 
neighbour hopping dominates and we find the Heisenberg ground state, but as we increase 
the electron density the Ntel order in the spin wavefunction increases until at n, we find 
pure Nee1 order, since the next-nearest-neighbour interaction requires both sublattices to 
be saturated and infinitesimal antiferromagnetic nearest-neighbour exchange then forces 
the sum of these two spins to form a total-spin singlet. Womes about lack of order in 
one-dimensional systems with short-range interactions are eliminated by observing that at 
the critical density itself there is additional degeneracy, associated with freely rotating the 
two sublattices with respect to each other, and this allows the order to survive, with the 
fluctuations leading to additional ground states, and not loss of order. Although the spin 
system becomes ordered, this does not mean that there is any experimentally observable 
magnetism present, as is explained in the next section: although the spins achieve order, the 
order is not directly tied to the fundamental atoms, but rather to the elecison order which is 
not directly measured in most experiments. 

For next-next-nearest-neighbour hopping there is now a more direct effect of the spin 
wavefunction on the local electronic motion. Instead of just vacant and occupied atoms, 
as before, there are now hops past zero, one and two electrons. The system can therefore 
gain its energy from different types of local correlation: ferromagnets prefer hops past pairs 
of electrons, so the holes will be kept apart, while paramagnets prefer hops past single 
electrons, so pairing of holes becomes beneficial. The electrons take account of both the 
local charge and spin configurations in deciding whether to move. 

The more exotic paramagnet originating from the fruStrated choice of signs requires 
some interpretation. Close to one electron per site, the spin wavefunction has a broken 
symmetry, but this will not be easily seen experimentally over distances greater than the 
hole-hole separation, because most probes couple to fixed atoms and if the number of 
holes fluctuates between any two atoms the correlations also fluctuate. There should be 
some consequences to the broken symmetry, but they will be quite subtle to assess. The 
critical concentration where the nearest-neighbour interaction vanishes no longer marks the 
phase transition between ferromagnetism and paramagnetism, although it is not difficult to 
convince oneself that the phase transition occurs to a classicai spiral of infinitesimal pitch. 
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This spiral-ferromagnetism transition occurs at a second critical point, n: = 0.581 6899, a 
little way below n,. This result can be deduced immediately from the observation that the 
ferromagnetic to spiral phase transition occurs when Jz = -J1/4 > 0 for the Heisenberg 
model, and nb is the concentration at which this particular ratio occurs. We will briefly 
discuss the status of this ferromagnetic to spin-spiral phase transition for the Heisenberg 
model, which is not a rigorous result as far as we know, in the appendix. We do not believe 
that this tiushated limit is worthy of more serious study at present. 

5. Interpretation 

One of the most confusing aspects to the current solutions is the spin-charge separation. 
In order to help with some insight, we will devote some space to explaining some of the 
conceptual difficulties and some of the physical reasons that the model behaves in the way 
that it does. 

Let us commence with the ferromagnetic phases, which one might expect to be trivial. 
In fact, even for this case the system is spin-charge separated and we have to consider 
the behaviour carefully. There are two types of excitation: charge-only excitations, which 
involve adding or subtracting an electron parallel to the existing ferromagnetism, and spin- 
only excitations, which involve a flipped spin travelling very slowly along the spin chain. 
This picture is very similar to that for itinerant ferromagnets, where we have spin-polarized 
band structure combined with collective spin waves: the charged excitations are the single- 
particle excitations, and the spin excitations correspond to the spin waves. For itinerant 
ferromagnets one can consider electronic states with electrons traveling with the ‘wrong’ 
spin, namely the higher-lying spin-polarized single-particle bands, but for our model these 
excitations are completely irrelevant, having been carried off to infinity as U --t 00. All 
that remains are the collective spin waves. It is the ability to describe collective effects that 
is the great strength of the analysis. 

The reason that the ferromagnet can be understood fairly readily in terms of single- 
particle and two-particle physics is because the main subtlety associated with labelling via 
the atoms or electrons is irrelevant. For a ferromagnet all the electrons are parallel, and so 
if we label with atoms or by electron number along the chain from one end, we find no 
spin dependence. For the quantum paramagnets this result is completely obliterated, since 
as we have seen, the spin wavefunction can be described only with an electron label and 
not with an atom label: the spin configuration along the chain remains invariant while the 
spin of an atom fluctuates as different electrons fluctuate. on and off that atom. 

hobably the most imponant phase is the quantum paramagnet found below the critical 
density with the unfrustrated choice of relative phases. This phase is the closest analogy to 
the phase expected to be superconducting in the perovskite. superconductors. The charged 
excitations once again map onto those of a saturated spin-polarized band, but there is no 
longer a direct analogy to a spin-polarized theory. This is a very important consideration in 
understanding the physics of the problem, so we will devote space to explaining this. To set 
up a single-particle spin-polarized band in the limit of infinite U, all that one needs to do is 
to define a spin quantization direction for each atom and then force an electron arriving on 
that atom to amve parallel to the chosen direction. The physical content of spin-polarized 
Hartree-Fock theory is then to choose these orientations so as to optimize the kinetic energy. 
The non-interacting character of such a band ensures that only one orientation can be found 
on any one atom, since if both were possible, both would happen and the Hubbard repulsion 
would be prohibitively expensive. What our description allows is for electrons of either 
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spin to hop onto a particular atom, but only to move to that atom when there is no other 
electron present, thereby avoiding the Hubbard repulsion completely. The electrons ‘Row’ 
along quite freely, but they carry their spin with them and do not change it according 
to which atom they reside on. The key to the theory is to label the spins according to 
the electron that they are found on, and not according to the atom on which they reside. 
Although the electrons carry their spins around, the charge motion is actually collective and 
the dominant motion comes from ‘slopping’ a region of charge along, without altering the 
relative positions of the electrons in that region appreciably; in practice, one can think of the 
charge as a ‘baton’ in a relay race, and each electron passes on the baton to its neighbour 
as the charge flows around in the system, but retains its spin. 

In the absence of longer-range hopping, the spin order along the chain never changes, 
and the inclusion of infinitesimal longer-range hopping provides a mechanism for the 
spins to move on a corresponding extremely long fie-scale. The process by which the 
spins move is that of sholt-range ring exchange as an elecmn hops past others. Unlike 
previous calculations, where the type of spin state predicted is  fixed, as the concentration 
of charge carriers vanes, there is competition between different types of exchange which 
can stabilize different types of magnetic correlation. It is this competition that controls the 
spin physics. For our unfrustrated next-next-nearest-neighbour hopping there are two types 
of spin interaction induced ring exchange of two and three particles. When an electron 
hops the longer distance, there are three possibilities: if there are no particles hopped over 
then the spin configuration along the chain remains invariant. If a single electron is hopped 
over on one of the two intermediate atoms then there is a two-particle ring exchange, and if 
both intermediate sites are occupied then there is a three-particle exchange. Obviously the 
probabilities of these three possibilities vary stmngly as a function of electron concentration, 
and this is what causes the changes of behaviour. 

The type of spin interaction induced is controlled by the relative phase of the two 
methods of transferring the charge in the system. In the absence of longer-range hopping, 
the electrons can move into any spatial configuration, conserving the spin configuration along 
the chain. Pairs of configurations are therefore present for which a single electron appears 
to have been moved across others. The way the motion actually occurs, is via each electron 
playing the role of its nearest neighbour, i.e. collective motion of sliding all the electrons 
along exchanging places as they go. The inclusion of direct hopping allows a second route 
between two such charge configurations, with an electron aCNdly passing over the others. 
We are in the limit where the collective motion is dominant, and so the spin configuration 
is controlled by the overlap between the two different resulting spin configurations and the 
relative phase in the charge wavefunction, and there are no compensations in the charge 
motion to make use of the new routes available. At first sight one might think that the 
Fermi phases in the free-electron gas wavefunction might present a problem, but this is 
not so, because for one dimension, spinless fermions map onto hard-core bosons and the 
hard-core boson wavefunction is positive definite. This allows us to deduce that the relative 
phase for collective motion is always unity, and the difference in phase is controlled by the 
Fermi minus sign for the real physical exchange of the electrons and the change in the spin 
wavefunction. Armed with these ideas, let us now look at our actual problem. 

When an electron hops past another. there is an exchange of fermions and a resulting 
Fermi minus sign. If the two electrons had parallel spins, then this minus sign would lead 
to destructive interference and would lose energy, whereas two antiparallel electrons are 
in an anti-symmetric singlet that compensates the Fermi minus sign yielding constructive 
interference and a gain in energy. This effect strongly promotes low-spin correlations, and 
at low densities, where there is a very low probability of electrons hopping m s s  pairs of 
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other electrons, this interaction dominates and forces the Heisenberg ground state on the 
spin system. When an electron hops across a pair of other electrons, then we find two 
Fermi minus signs, which cancel, promoting spin states that are ‘symmetric’ under ring 
exchange. In practice, ferromagnetism is the only spin state that is symmetric under all 
such ring exchanges, and near one electron per atom, where the probability of hopping past 
pairs of electrons dominates, this interaction is dominant and we find that ferromagnetism 
is stable. Near the critical density, where the competition is fierce, the situation is more 
subtle and worthy of further investigation. It is quite instructive to consider the critical point 
itself, where the phenomena are quite exotic: In the ferromagnetic phase the electrons hop 
over both single and paired electrons in just such a way that the lost energy from the first 
possibility exactly balances the gain in energy from the second. In the Nkl antiferromagnet. 
however, the electrons never hop over each other at all, and only gain energy from hops over 
vacant sites. Although these two phases are precisely degenerate, the manner in which they 
achieve their low energy is quite different, with the ferromagnet yielding non-interacting 
motion while the IWel antiferromagnet has such strong correlations that the electrons only 
move if there is nothing in the way. 

If we were to raise the strength of the infinitesimal interaction to finite values, it is 
instructive to ask which of the two predicted phases would become relatively stable. The 
ferromagnet has optimized all of its available degrees of freedom and remains in an identical 
state until the longer-range hops are a sizeable fraction of the nearest-neighbour hops, 
gaining nothing from the longer-range hops. For the antiferromagnetic Ndel state, however, 
it is clear that the charge-motion is controlled by 

involving interactions between the charges which will induce correlations, which will in 
turn save energy and stabilize the state with respect to the ferromagnet. Of course these 
charge correlations would feed back modifications to the spin interactions which would then 
change, feeding back further modifications to the charge state, ad nauseam. These charge 
correlations are collective effects much akin to pairing correlations in BCS theory and can 
be used to suggest why pemvskite superconductors work [14]. 

6. Conclusions 

We have mapped the one-dimensional Hubbard model with dominant nearest-neighbour 
hopping and infinitesimal next-nearest- and next-next-nearest-neighbour hopping onto a 
pair of simpler models for the separated charge and spin degrees of freedom. The charges 
move around under the action of the spinless fermion model, and the spins move around 
under the action of the Heisenberg model with both nearest- and next-nearest-neighbour 
spin interactions. 

For the physically interesting case of unfiustrated next-next-nearest-neighbour hopping, 
the spin physics changes dramatically as a function of electron concentration. At low 
concentration there is a highly quantum spin paramagnet, while at high concentrations there 
is a non-interacting saturated ferromagnet. This agrees with the simple picture of Kanamori 
paramagnetism at low electron concentrations [51, changing to Nagaoka ferromagnetism 
at high electron concentration [6] .  Although this agreement exists, and further our phase 
diagram is to all intents and purposes rigorous, we do not believe that the result is relevant to ’ 
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the twodimensional square lattice. We have been able to show, for extensions of our model 
to longer-range hopping, that the ferromagnetic phase has a shrinking range of stability, 
which vanishes when the range of the hopping diverges. Although our extended model 
is still not the two-dimensional square lattice, we are more convinced by the lack of a 
ferromagnetic region for the extended model than by the current stable ferromagnetic region. 

The charge motion for these two phases is very different, with the ferromagnet being 
a non-interacting problem, while the paramagnet is a strongly interacting problem with 
particles moving only when the local configuration of their neighbours is favourable. Of 
course, the predominant motion is that of a free-fermion gas, but the longer-range hopping 
that lifts the spin degeneracy feeds back sophisticated many-particle interactions between 
the fermions when considered for the fixed spin wavefunction ground state. The source 
of energy is the avoidance of the phase cancellation inherent in a fermionic description: 
the fermionic minus signs, originating in exchange, can be compensated by the symmetry 
properties of the spin wavefunction, leading to enhanced motion. Since the enhancements 
occur only when particles pass others, it is not surprising that the electrons are attracted to 
each other in order to make use of this additional motion. 

The modifications expected to the charge motion, fed back from the spin wavefunction, 
involve strong attractions between the charges, making them behave in a more hard-core 
boson manner than spinless fermion manner. The use of the spin wavefunction to avoid 
fermionic phase cancellation allows the particles to freely explore all of space, in a similar 
manner to the motion of hard-core bosons, and not to be restricted to avoiding lines in space 
as often happens with fermions. 

When ferromagnetism ceases to be stable as a function of hole doping, the state that 
replaces it is fundamentally antifenomagnetic. This result comes purely from the charge 
motion and does not arise from any Heisenberg interactions which we have omitted from 
the model. This basic result. that the Heisenberg interactions yield local spin correlations 
very similar to those induced by permutations around square loops, should be bom in mind 
when thinking about perovskite superconductors. It is quite possible that the Heisenberg 
interactions are irrelevant to the system in the important superconducting regime, where the 
motion around loops could easily take over the role of dominant interaction. 

The use of the Jordan-Wigner transformation, to convert a bosonic representation to 
a fermionic representation and vice versa, may well prove to be a powerful technique for 
comparing the motion of charges in highly correlated systems. For the current models we 
see that the motion in our paramagnetic phases follows quite closely the behaviour of a 
hard-core Bose gas acting under equivalent longer-range hopping interactions, in complete 
agreement with the previous numerical work in two dimensions 171. 
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Appendix. The J l J 2  Heisenberg model 

Although it is not central to our argument, since we map our Hubbard models onto the 
J I - J ~  Heisenberg model, we ought to say what is currently known about the phase diagram 
of this model. As well as the obvious phase transition that occurs when J I  = 0 and J2 e 0 
between a long-range ordered antiferromagnet (in the limit) and a ferromagnet, there are 
three other necessary phase transitions. Firstly, the ferromagnetism must destabilize again, 
and we believe that this occurs when 4J2 = -JI  > 0. Secondly, it is known that when 
2J2 = Jr there is a gap in the spectrum, and so there must be two phase transitions, into 
and out of this gapped phase. 

Ferromagnetism is classical, in the sense that there are no quantum fluctuations. Any 
second-order phase transition must therefore also be classical, and it is simple to verify that 
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the classical phase boundary between ferromagnetism and a spiral is when 4 J2 = - J I  0. 
This argument is ‘true’ but not rigorous, and further there could be a previous first-order 
transition to a singlet phase dominated by quantum mechanics. If one performs some exact 
diagonalization studies, then one is immediately led to a remarkable result that establishes the 
validity of this phase boundary to any reasonable person. For any finite loop with periodic 
boundary conditions there is an eract degeneracy between a saturated ferromagnetic ground 
state and a total-spin singlet spin-spiral ground state, when 452 = - Jt > 0. Since small 
changes in parameters stabilize the expected ground state, it is difficult to see how this point 
could not correspond to the exact phase transition. 

The other two phase transitions are much more subtle, since they occur between total- 
spin singlet states that cannot be found analytically. We believe that one transition may 
occur when 51 = 0 and J2 > 0, although we have no direct evidence for this conjecture. 
and the other transition must occur between J2 = 0 and 2Jz = 31 > 0. We believe that this 
second transition occurs exactly when 4Jz = J1, but the evidence for this will be published 
at a later date. 
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